Microfabricação em materiais poliméricos usando laser de femtossegundos

Prof. Cleber R. Mendonça

http://www.fotonica.ifsc.usp.br

University of Sao Paulo - Brazil

students 77.000 52.000 undergrad. 25.000 grad. **employers** 15.000 **professors** 6.000

- Sao Paulo
- Sao Carlos (9.000)
- Ribeirao Preto

University of Sao Paulo – in Sao Carlos

University of Sao Paulo – in Sao Carlos

Instituto de Física de São Carlos

Professors: 80 Employers: 180

(technical and administration)

Students: 450 (undergrad) 100 (master) 140 (phD)

Several research areas in Physics and Material Sciences

Photonics Groups

The purpose of the Photonics Group is to develop fundamental science and applied technology *in Optics and Photonics* (*founded in 2003*)

- 4 Professor2 Researchers
- 1 Technician
- 1 Administrative

- 2 Post docs 10 – PhD students 6 – Master students
- 5 Undergrad students

Some of the research areas

- Nonlinear optics
- Coherent control of light matter interaction
- fs-laser microfabrication and micromachining
- Optical spectroscopy
- Optical storage

- study of optical nonlinearities in organic materials
- optical storage and surface relief gratings in azopolymers
- coherent control of light matter interaction
- fs-laser microfabrication

cw laser

Picosecond laser

Laser Nd:YAG
Qswitched/modelocked
532nm and 1064 nm
100 ps

150-fs amplified laser system

 ✓ Amplifier Ti:safira
✓ 775 nm
✓ 150 fs
✓ 800 µJ

Optical Parametric Amplifier

TOPAS

✓ pumped - Laser Clark
✓ 460 - 2600 nm
✓ ≈ 120 fs
✓ 20-60 µJ

15-fs laser

microfabrication lab

- study of optical nonlinearities in organic materials
- optical storage and surface relief gratings in azopolymers
- coherent control of light matter interaction
- fs-laser microfabrication

focus laser beam on material's surface

photon energy < bandgap

nonlinear interaction

nonlinear interaction

nonlinear interaction

multiphoton absorption

focus laser beam inside material

curved waveguides inside glass

it is important to understand the nonlinear interaction, as well as the nonlinear response of materials

Outline

Introduction to microfabrication/micromachining fs-micromachining microstructuring MEH-PPV waveguides in azopolymers superhydrophobic surfaces two-photon polymerization birefringent microstructures fluorescent microstructures biocompatible microstructures

Nonlinear optics

high light intensity

anharmonic oscillator

nonlinear polarization response

$$P = \chi^{(1)}E + \chi^{(2)}E^2 + \chi^{(3)}E^3 + \dots$$

multi-photon absorption

 $\chi^{(3)}, \chi^{(5)}, \chi^{(7)}, \dots$

$$\alpha = \alpha_0 + \beta I + \alpha_3 I^2 + \alpha_4 I^3 + \alpha_5 I^4 + \dots$$

two-photon absorption

two-photon absorption

Nonlinear interaction provides spatial confinement of the excitation

two-photon fluorescence

femtosecond pulses

fs-pulses for micromachining polymers

Oscillator: 80 MHz, 5 nJ

heat diffusion time: $t_{diff} \sim 1 \ \mu s$

cumulative

fs-microfabrication

linear versus nonlinear absorption

two main techniques

fs-laser micromachining

ablation structural modification

microfabrication via two-photon polymerization

Micromachining the conductive polymer MEH-PPV

optical microscopy

a: 0.07 nJ b: 0.14 nJ c: 0.34 nJ d: 0.68 nJ

Applied Surface Science, 254, 1135–1139 (2007)

Micromachining the conductive polymer MEH-PPV

Micromachining the conductive polymer MEH-PPV

Waveguides in azo-polymers

DR1

Waveguides in azo-polymers

- (a) Optical microscope image of the waveguides micromachined (PMMA/DR1)
- (b) Cross-sectional view of the waveguides

Optics Express, 16, 200-205 (2008)

waveguides in azo-polymers

(c) Output image of the mode profile of 632.8-nm light coupled through the waveguide

3D wave splitter

microstructuring polymer: super hydrophobic surface

microstructuring polymer: super hydrophobic surface

laser microfabrication

examples of fabricated surfaces

microstructuring polymer

width and depth control

flat surface

microstructured surface

microstructuring polymer

flat surface

 $\theta = 118^{\circ}$

microstructured surface

 $\theta = 160^{\circ}$

fs-laser microfabrication

Novel concept:

build a microstructure using fs-laser and nonlinear optical processes

applications

- micromechanics
- waveguides
- microfluidics
- biology
- optical devices

Monomer + Photoinitiator \rightarrow Polymer

Photoinitiator is excited by *two-photon absorption*

even higher spatial resolution

Two-photon polymerization setup

Resin Preparation

Monomers

Monomer A

reduces the shrinkage upon polymerization

Monomer B

gives hardness to the polymeric structure

Photoinitiator

Appl. Phys. A, 90, 633–636 (2008)

30 µm x 30 µm x 12 µm cube

After the fabrication, the sample is immersed in ethanol to wash away any unsolidified resin and then dried

Microstructures fabricated by two-photon polymerization

Microstructures containing active compounds

Applications of two-photon polymerization

Optics and Photonics

Doping microstructures with organic molecules and metals

fluorescence birefringence conductivity

Bio-applications

Fabrication using bio-compatible resins to biological applications

tissue engineering scaffolds fabrication of microneedle cell study **Applications**

1) Optically induced birefringence

2) Emission and conduction

3) Biocompatible microstructure

Incorporating the azodye DR13 into the microstructure

Optically Induced birefringence

Ar+ ion laser irradiation

- 514.5 nm
- one minute
- intensity of 600 mW/cm²

The sample was placed under an optical microscope between crossed polarizers and its angle was varied with respect to the polarizer angle

The structure is visible when the angle between the birefringence axis and the polarizer is an odd multiple of 45°

∆**n= 5x10**-5

This birefringence can be completely erased by irradiating the sample with circularly polarized light.

Applications: micro-optical switch, micro-optical storage

J. Appl. Phys., 102, 13109-1-13109-4 (2007)

The structure is visible when the angle between the birefringence axis and the polarizer is an odd multiple of 45°

This birefringence can be completely erased by irradiating the sample with circularly polarized light.

microstructure containing MEH-PPV

Fluorescence Electro Luminescent Conductive

microstructure containing MEH-PPV

- (a) Scanning electron microscopy
- (b,c) Fluorescence microscopy of the microstructure with the excitation OFF (b) and ON (c)
- (d) Emission of the microstructure (black line) and of a film with the same composition (red line)

Applied Physics Letters 95 113309 (2009)
microstructure containing MEH-PPV

Fluorescent confocal microscopy images in planes separated by 16 μ m in the pyramidal microstructure.

Applied Physics Letters 95 113309 (2009)

microstructure containing MEH-PPV

Applications: micro-laser; fluorescent microstructures; conductive microstructures

3D cell migration studies in micro-scaffolds

schematic of the scaffold

SEM of the scaffolds 110 µm pore size

52 µm pore size

Top view

110, 52, 25, 12 µm pore size

Side view

25, 52 µm pore size

Advanced Materials, 20, 4494-4498 (2008)

(j)

cell migration

50 μm pore size after 5 hours

c-d: 110, 52, 25 and 12 μm

Acknowledgments

FAPESP CAPES CNPq NSF ARO

www.fotonica.ifsc.usp.br

para obter uma cópia desta apresentação

www.fotonica.ifsc.usp.br

para obter uma cópia desta apresentação

www.fotonica.ifsc.usp.br

